PlusTriac 1HV Series

3KVA to 10KVA

Key Features

- > Built-in delay time setting (2/30/60/180/300 seconds) can be configured through the LCD interface.
- > Equipped with lightning and power surge protection to prevent equipment damage from electrical shocks.
- > Built-in 4-steps boost and 3-steps buck regulation, achieving a voltage regulation rate of ±2% to ensure stable output voltage.
- LCD interface allows configuration of rated voltage, delay time, voltage regulation rate, and input range.
- Microprocessor Controlled loop enables precise TRIAC switching operation, compatible with inductive, capacitive, and resistive loads.
- > Built-in environmental temperature monitoring ensures proper fan operation and protection.
- TRIAC components with low-frequency design regulate voltage without electromagnetic interference.
- > Electronic design ensures spark-free, noise-free, instant regulation and longer lifespan.
- Color LCD displays status and faults to support equipment maintenance.

Typical Application

Fridge

Coolers

Freezer

VSAT

Pumps

Lighting System

Washer & Dryer

Vending Machine

Plotter

Laser Printer

Multifuntion Printers/Copiers

Laboratory Equipments

Specification

MODEL	PlusTriac 1HV-3K	PlusTriac 1HV-5K	PlusTriac 1HV-8K	PlusTriac 1HV-10K
Rated Capacity	3KVA/2.4KW	5KVA/4KW	8KVA/6.4KW	10KVA/8KW
Technology	Fully electronic TRIAC-controlled voltage regulator			
INPUT				
Rated Voltage	200/220/230/240Vac, 1P2W+G			
Voltage Range	± 25% (default); ± 20%, or ± 30%, or ± 35% (selected via LCD)			
Voltage Tolerance Range	± 15%			
Frequency	50/60Hz ± 5%			
Power Factor	More than 0.98 (with resistive load)			
OUTPUT				
Rated Voltage	200/220/230/240Vac, 1P2W+G			
Regulation Rate	± 2% (default) ; ± 3%, or ± 4%, or ± 5% (selected via LCD)			
Transfer Time	0ms			
Distortion	No distortion (same as input waveform)			
Response Time	< 20ms			
Efficiency	More than 96% under full load			
Power Factor	More than 0.8			
Overload Capability	105%-125%, buzzer beeps twice per second, AVR does not shut down			
	125%-150%, buzzer beeps four times per second, AVR shuts down 5 minutes later			
	150%-300%, buzzer beeps continuously, AVR shuts down 30 seconds later			
	Over 300%, buzzer beeps continuously, AVR shuts down in 5 seconds			
STATUS INDICATION				
Alarm	Over input voltage, under input voltage, high temperature, overload			
LCD Display	Input voltage, output voltage, load, temperature, faultetc.			
FUNCTIONS				
Surge Protection	600 Joules ; Inrush current capacity 12000Amp (8/20us)			
Soft Start	Yes, enables automatic startup with configurable time			
Protection	Electronic circuit: Over input voltage, under input voltage, overload, high temperature, short circuit protection			
ENVIRONMENT				
Operating Temperature	0-40°C (32°F-104°F)			
Operating Humidity	0-95% (Non-condensing)			
Noise Level	<40dB at 1M			
PHYSICAL				
Dimension (D*W*H)	430*145*220mm			

^{*}Product specifications are subject to change without further notice.

LCD Interface Introduction

> Display panel with various information

Input and output voltage

Load capacity and current

Input frequency and rated output voltage

Temperature of autotransformer

Temperature of compensation transformer

Temperature of TRIAC components

Peak load of AVR operation (data updated every 10 minutes)

AVR rated capacity and max. inrush current

> Configurable parameter values

OFF: AVR off mode

A1: Output delay time -2\$/30\$/60\$/180\$/300\$

A2: Rated output voltage -100V/110V/115V/120V or 200V/220V/230V/240V

A3: Output regulation rate -2%(default) or 3%/4%/5% (Energy-saving is achieved when output regulation rate is

A4: Input voltage range -25%(default) or 20%/30%/35%

EE: Press On/Off button for 2 seconds, configuration parameter will be saved and exit "AVR SETTING" mode

E01: Output short circuit

> Error code

E02: Temperature of autotransformer is high

E03: Temperature of compensation transformer is high

E05: Mode setting error

E07: NTC1 component abnormal

E08: NTC2 component abnormal

components is high

E09: NTC3 component abnormal

E10: Overload

E06: Phase error

Key points to compare Solid State TRIAC AVR v.s. Servo AVR

TRIAC AVR

It is designed without mechanical parts, allowing it to perform steadily and reliably even in dust environment.

Servo AVR

It relies on a moving brush. It faces significant challenges in dusty environments, leading to increased contact noise and supply disruptions.

TRIAC AVR

It features microprocessor control and utilizes solid-state switching devices that are capable of withstanding hundreds of times the running current during inrush periods.

Servo AVR

Servo motor technology is outdated. Choosing modern technology can help protect your investments.

TRIAC AVR

It uses exclusively solid-state components, without any mechanical or moving parts. Under normal usage conditions, the product has a lifespan of over 10 years.

TRIAC AVR

It is controlled by a microprocessor and designed for ultra-fast operation. It can switch at zero voltage within the mains cycle to eliminate any noise generation.

Servo AVR

As mechanical parts wear out over time and will demand maintenance, downtime resulting from these issues reduces the voltage regulator's effectiveness.

Servo AVR

In less clean environments, the motor brush's movement on the toroidal transformer creates noise from dirt, potentially causing malfunctions or incorrect data in control systems.

SPFFD

With TRIACs and Thyristors, switching speeds can be achieved in microseconds, which helps make rapid corrections possible.

SURGE

When mains power fails, the AVR will automatically reset and start up with a suitable output voltage.

Motors are slower than solid-state components, leading to delayed corrections. Faster responses are crucial to reduce exposure to harmful voltages, especially for electronics.

Servo AVR

When mains power fails, the servo boosts voltage by winding the motor. If power is recovered suddenly, the servo may amplify the boost, risking damage to sensitive electronics.

TRIAC AVR

While the AVR is more expensive due to the use of sophisticated technology it incorporates, it has little operating costs.

Servo AVR

Although the servo AVR is more affordable, its mechanical nature demands constant maintenance and spare parts, raising operating costs.

TRIAC AVR

The TRIAC AVR provides an output with 5% accuracy, which is sufficient for most electrical equipment.

Servo AVR offers 0.5-1% accuracy, but this is not necessary since electrical equipment operates within a wider range. The constant operation of its mechanical parts can lead to faster wear and tear.

